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ABSTRACT

The Hirschfelder-Silbey perturbation theory(l) has been applied to the
Hé+ molecular ion. The first order perturbation equation has been solved
by means of a variational method and the resulting gerade and ungerade
energies are given through third order.

The ungerade energy is in very good agreement with the exact energy,

but the corresponding gerade energy is relatively poor. These results are

currently under investigation.
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Introduction

In a recent report Hirschfelder and Silbey

@)

have developed a new

perturbation scheme for the investigation of atomic and molecular systems.

This method uses a product of atomic or molecular orbitals as the zeroth

order wave function and has the feature that all quantum states arising

from a single electron configuration are treated simultaneously.

Here we report some results obtained from the application of this

method to the simple case of the H

Theory for Hi+

The lowest gerade and ungerade states of H +
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molecular ion.
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2 have wave equations
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(see figure 1)

functions in the form
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are atomic orbitals centred on atoms A and B

figure 1) and Ng

and N
u

are normalization constants.
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figure 1

Substituting equations (2) into (1) and adding the resulting equations

gives
c _r
Hq=(—J——E;_“°‘+ —%——‘Elb“b 3)
which is the equation we wish to solve by perturbation methods.
We write
a = a(0)+ a(l) + a(z) + ----
b = b(o)+ b(l) + b(z) + ----
g = 8Oy W45 @ .
g g
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H o= H_ +V, =H +V
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Substituting these expressions into (3) and equating terms of like order

we obtain the set of perturbation equations.

)
anh = €949

c ) o O\ le
qu(u)+qu()_ 9, +0_01) ‘)h)

Hoa®P+ViaV = e®a® 4 ¢®a® + ¢@g®

Am b“’ + A(z) L“’)

4)

. (0 () (i (&) ()
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Ha is the Hamiltonian of a hydrogen atom centred on A and we
(0)

choose a

1))

€ is hence the ground state energy of the hydrogen atom (= -0.5 a.u)

to be the ground state eigenfunctions of the hydrogen atom;

A knowledge of \IJ g and qju through nth order determines the energy

through (2ntl)st order. So we require
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which meaas that we have
(b Ha- ePlay =0
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for the exact a- and a . Note that we do not require (a) to

be normalized or orthogonal to higher order wave functioms. ij.e.
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Also from the above relationships we obtain the following expressions

for the energy terms up to third order.
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It should be noted that when the exact a is known the expression

)
(6) for 6(3) can be reduced, using the 1lst order equation (4), to
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However, when solving for a by a variational method we are not
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working with the exact a so (6) should be used to obtain

Solution of the first order equation by a variation method

I1f we construct the functional

T = X\ Ha- €21 XY « {X\Va-€y REN
4+ Lo\ Va - e“‘\ Xy - - AN XN b‘°’ —a'?)

L AR X

we see that when J is stationary with respect to first order variations

of X then X is a solution of the first order equation (4).




If we expand x in a compliete set of functions
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We require J to be stationary w.r.t. changes in the C's
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The prime indicates that the n = 2 term is omitted from the summation,

Since Hn& = Hﬂn we have




2 ZC“HMZ + 2LV =0 (10)

In general we need
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which gives an infinite set of equations of the form (10). If we
consider only a finite number of basis functiouns in the expansion (8)

for X i.e. write
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X = 2 caVn
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then tahe set of N equations (10) may be written as
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" He=-V
so (E =—-H"V (11)

For a given basis set the matrices H and v may be obtained
and hence @« is derived by the usual matrix inversion techniques.



The set of basis functions used were the LbBwdin orbitals(z) which

have the general form

Garn = Rae(0)V7(5, )

where
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m
and 71 (9/ ¢3 are the usual surface harmonics and L n4Q ¢\

are the Laguerre polynomials,

This set of functions appear superficially to be similar to the
hydrogenic functions however they have only one function in common, that
is the ground state 1ls hydrogen eigenfunction. The advantage gained
by using the LBwdin orbitals is that a denumerably infinite set of them
is complete, whereas the hydrogenic orbitals form a complete set only
when continuum states are included. It is hoped that an expansion in
terms of LBwdin orbitals will converge to the solution for a(l) more

rapidly than an expansion of hydrogenic orbitals would.

From an examination of the first order equation

oy () A & ) (o ) \ (0
(H.-€9)a -ge = o a4 b (13)

we see that the equation has a pole at r, = 0 ; we therefore expect a

singularity in the solution at r, = 0.

Now near r, = 0 the second term in (13) has the form




since ra = R at rb . If we write
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So introduction of a term of the form Cle-Rb(O) in a(l) will

remove the singularity at T, = 0.

In the light of this the trail a(l) was constructed from a linear
combination of e-Rb(O) with a finite set of LBwdin orbitals. The
finite set chosen did not include the 1s orbital hence each term in

(1))

the set was orthogonal to a . In order to solve (11) for the matrix

d: it is necessary first to have the matrix elements Hnm and Vn .




The Hnm elements may be obtained directly from the work of Hirschfelder

and Ldein(B). We have,
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In the derivation of the elements Vn the functions have been written

in terms of the prolate spheroidal coordinates defined by (see figure 1)

- Ta+ ¥y = '*-q."'{~b .
§ R A R g 43

which gives

o by = 12
“ (% +m)

co By = (8m-1

10




11

From (9) we have
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where the different n' refer to different values of n and Q

We can express the functioas y611‘ in terms of spheroidal
coordinates using the relations
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When this is done we obtain expressiongfor
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which are given in the appendix.

Hence using these results [}—{] and ‘QZ¢7 may be constructed

and q: found.



Once we have Q: for some finite basis set of functions we can
use the approximate a(l) they define to calculate the energies
(2) (3) '
E(Q) J e(as and E(a\ (1) . This has been done (making use of the

integrals given in the appendix) for different sets of basis functions

and some of the results are given in table 2.

Discussion of Results

We should note two points in connection with these results. First,
although the variational method we are using to solve equation (4) will

Ned

given an approximate which improves as basis functions are added
successively, the expectation value of the Hamiltonian calculated using
the wave function through €first order (i.e. éE.(l) ) will not
necessarily decrease as each new basis function is added. That is the
variation method does not systematically give a stationary value of

E (1)

The second point is that the second-order energy for the ungerade
(2
state, GEQ , is positive in contrast to the results of the usual

(2)
Rayleigh-Schr8dinger theory where c 5; o , always.

Suppose we take the original wave equation

Héw = E@ ba

and expand
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Using the first order weve function obtained by the 'mew' perturbation
theory as a trial wave furcticn for a Rayleigh-Schr¥dinger treatment
we obtain

{o)

8 - I el TE) + 2 < T8 IVal b
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(14)

If we take the second order energy given by the Hirschfelder-Silbey

theory (6) and substitute in (14) we have

E&‘; = e:;;) <QlO§\q(e)__t\)(o\> + le([‘f:\)<q(0)‘q(\\ih(u>
w L Ham @I + <O [ Ha-€®1bY)
-+ 1<\>m\\fq\\>m> + 2 < b(ﬂ\vq ‘qm>

This relationship does not appear to give any restrictions to the sign of
(2) ) (2)
GE(S) , 80 the positive values of GE“ need not be a cause for
concern.

) . . . . - 0
From an examination of Table 2 we see that using a basis of e Rb( )

together with the 2s,2p,3s,3p.3d 4s,4p,4d,4f,5g LBwdin orbitals the

ungerade energy EE; (1) is very close to the 'exact' value given by Peek(A).
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However the gerade energy éis(JB compares relatively poorly with Peek's
value and in fact we see that the basis set of 8 functions gave a better
value for &3(1\ . It seems clear from these results that large
basis sets should be used in an attempt to obtain convergence of 63(1)
and éiu(13 to some steady value. However, judging from the results

we already have for the ungerade energy it would appear that the method

is capable of giving fairly accurate results.
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Appendix

The following integrals are used in the solution of the matrix

equation (11) and in the evaluation of the energy terms.

We define

Koo = 2" (a-2-)! 2041
M (40! L(atRt)t 2

@0\0 - R"*‘ Z (u-n‘

vin) = — Z N N—;‘ {(-\)N-Lee— e.'e}
R -
S(N) = Nll n even
*

R 1is the molecular bond length.
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